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Abstract

A micromorphic crystal plasticity model is used to simulate slip band localization in single crystals

under simple shear at finite deformations. Closed form analytical solutions are derived for single

slip in the case of positive, zero and negative strain hardening. Linear negative strain hardening,

i.e. linear softening, leads to a constant localization slip band width, while non linear softening and

saturating behaviour results in an increasing band width. An enhanced model is therefore proposed in

order to maintain a bounded localization slip band width when considering an exponential softening

behaviour. Analytical solutions are used to validate finite element computation of the same boundary

value problems. The enhanced micromorphic crystal plasticity model is then applied to predict the

interaction between localized slip bands and voids encountered in porous irradiated materials. For that

purpose, periodic porous unit cells are loaded in simple shear with a strain gradient crystal plasticity

matrix material. The finite element simulation results show that, for a given void volume fraction, the

larger the voids, the wider the localization band. However, for a given void size, the larger the void

volume fraction, the narrower the localization band. In addition a satisfactory qualitative agreement

of the rotation and elongation of the voids with the experimental observations made in irradiated

materials is observed, where small voids are shown to remain ellipsoidal for larger shear strains. Large

voids deform into peanut-like shapes.

Keywords: Strain Gradient Crystal Plasticity, Micromorphic approach, Slip band localization,

Ductile fracture, Void shearing, Irradiated materials

1. Introduction

Strain localization is commonly encountered in experiments involving a wide range of materials at

scales spanning over multiple orders of magnitude and are referred to as necking, shear bands, Lüders

bands, Portevin-Le Chatelier effect. The pioneering works of Considère (1885); Hadamard (1903);

Thomas (1961); Hill (1962); Mandel (1966); Rice (1976) set the general framework for predicting5

strain localization as a result of a mechanical instability involving either geometric or material im-

perfections. In metals, a material-based instability may for example originate from a porosity growth

1This article was presented at the IUTAM Symposium on Size-Effects in Microstructure and Damage Evolution at
Technical University of Denmark, 2018
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induced softening behaviour leading to shear-banding, while necking in a tensile test is an exam-

ple of a geometry-based instability (Hart, 1967; Audoly and Hutchinson, 2018). In single crystals

slip bands and kink bands described in (Gilman, 1954; Jaoul, (1965, 2008); Neuhäuser, 1983b) are10

common occurrences of material induced strain localization phenomena. Characteristic length scales

arise naturally in strain localization phenomena observed in experiments, but conventional material

models are however size-independent and therefore cannot provide satisfying predictions for strain lo-

calization. In addition when aiming at modelling softening mechanisms, numerical simulations using

conventional theories display spurious mesh dependent dissipated energy due to the loss of ellipticity15

of the underlying partial differential equations (see e.g. Bažant et al. (1984); Lorentz and Benallal

(2005); Germain et al. (2007)). As a remedy, regularization methods such as Cosserat, integral and

gradient models (see (Forest, 2005) and references quoted therein) have been developed extensively

in the past few decades also motivated by size effects observed in experiments. In particular, obser-

vations suggest that some size effects in metals are related to Geometrically Necessary Dislocations20

(GND) (Stelmashenko et al., 1993; Fleck and Hutchinson, 1997). Hence strain gradient plasticity

(SGP) theories have been extended to frameworks suited to (sub-)crystalline scales, as for instance

continuum crystal plasticity ((Fleck and Hutchinson, 1997; Forest et al., 2000; Bardella, 2006; Cordero

et al., 2010; Niordson and Kysar, 2014) and references quoted therein).

For metallic single crystals strain localization induced by material softening generally results in the25

formation of slip bands. These thin bands are parallel to the primary slip plane and their thickness

is directly related to the defect density and softening mechanism involved. In contrast, kink bands

are localization zones of finite thickness that are perpendicular to the slip direction. Kink bands are

known to occur when strain incompatibility arises and if not enough slip systems are available. Asaro

and Rice (1977) have performed a bifurcation analysis of plastic slip localization for crystals undergo-30

ing single slip. Their theoretical analysis shows that slip and kink bands are equally probable single

slip localization modes in that conditions. Asaro and Rice’s bifurcation analysis is based on standard

crystal plasticity. More advanced crystal plasticity models incorporate the dislocation density tensor

as a hardening variable in addition to scalar dislocation densities (statistically stored dislocations)

(Gurtin, 2002; Wulfinghoff et al., 2015). Dislocation pile-ups are known to induce a back-stress and35

associated kinematic hardening (Steinmann and Stein, 1996; Forest, 2008; Cordero et al., 2010). As

a result localization in kink bands can be superseded by slip bands that do not induce any lattice

curvature as proved by the bifurcation analysis in (Forest, 1998). Strain gradient plasticity introduces

length scales in the continuum models and can therefore provide physically-relevant regularization

properties. It appears that strain gradient plasticity regularizes kink bands, meaning that simulated40

kink bands have a finite thickness (Forest et al., 2001). In contrast the finite element simulation of

slip bands is mesh–dependent (they are one element (in fact one Gauss point) thick) because they

can develop in the absence of accumulation of GND. The recent simplified strain gradient plasticity

model developed by Ling et al. (2018), following the approach from Wulfinghoff and Böhlke (2012);

Wulfinghoff et al. (2013), displays the unique feature of regularizing both slip and kink bands. This is45
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because it involves the full gradient of a cumulated slip variable instead of the dislocation density ten-

sor or individual GND densities. This model is acknowledged to be too crude to control independently

the intensity of slip and kink bands. The regularization effect on slip bands is of phenomenological

nature, it has no precise physical background in contrast to kink bands which are controlled by the

formation of polarized dislocation walls represented by GND densities. It is a necessary feature for a50

model to be used in mesh–objective finite element simulations of slip banding in crystals.

Although it is of particular importance when investigating flow localization, only a few works men-

tion the evolution of the length scale during straining and how it is linked to the hardening/softening

behaviour. In an early work Zbib and Aifantis (1988) highlighted the slip band narrowing arising

when considering a parabolic hardening/softening behaviour in a strain gradient framework. In the55

different but closely related context of non-local damage models, Geers et al. (1998); Simone et al.

(2004) evidenced spurious spreading of damage over continuously wider regions. Recently Poh and

Sun (2017) and Vandoren and Simone (2018) proposed to use a damage-dependent length scale respec-

tively in micromorphic and integral non-local damage models to address this unwanted phenomenon.

Dislocations motion mechanisms motivated Forest and Sedláček (2003) to propose evolving length60

scales depending on the dislocation density. Dahlberg and Boasen (2019) provided a strain gradient

framework incorporating an evolution law for the constitutive length scale parameter which is also

physically based and directly related to the dislocation density. Evolving length scales are also present

in the newly developed SGP model by Petryk and Stupkiewicz (2016). Also, to the authors’ knowl-

edge, the case of saturating softening behaviour has received little attention in the literature. This65

is particularly important when aiming at simulating ductile failure at large local strains of materials

exhibiting softening. We will show in the present work that the saturated regime in most existing

SGP models leads to unwanted broadening of the localization zone. This feature will be analyzed and

a remedy will be proposed.

One example of intense flow localization is the mechanism of dislocation channel deformation70

(DCD). It consists in a highly heterogeneous deformation mode at the grain scale. Abundant obser-

vations of this deformation mode have been made in quenched (Bapna et al., 1968; Mori and Meshii,

1969; Wechsler, 1973), predeformed (Luft et al., 1975) and irradiated (Tucker et al., 1969; Smidt Jr,

1970; Wechsler, 1973; Fish et al., 1973; Farrell et al., 2003; Jiao and Was, 2010; Gussev et al., 2015)

metals. Such channels initiate when the first moving dislocations are clearing a path of isolated sessile75

obstacles, for example Frank dislocation loops, leading to a reduced defect density inside channels.

They are also called clear bands due to their contrast in electron microscopy (Lee et al., 2001). The

induced softening along that path is the precursor to flow localization. It has been shown experimen-

tally in (Farrell et al., 2003) and numerically in (Barton et al., 2013; Arsenlis et al., 2012; Cui et al.,

2018) that deformation localization in irradiated steels is simultaneously accompanied by a loss of80

dislocation interactions and activation of fewer slip systems. The thickness of dislocation channels is

typically measured in a 10 nm to 100 nm range in irradiated materials (Farrell et al., 2003). Disloca-

tion channels are known to have a strong influence on macroscopic mechanical properties of nuclear
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(a) (b)

Fig. 1: (a) Dislocation channeling observed by TEM in a highly irradiated (7.5× 1022 n/cm2, E > 0.1 MeV) deformed

tension specimen tested (stainless steel 316) at 370 ◦C (reproduced from (Fish et al., 1973)) displaying peanut-like

void shapes (b) Deformed neutron irradiated stainless steel 316 at 340 ◦C displaying sheared and elongated irradiation

voids (pointed out with yellow arrows) inside a dislocation channel (bounded by cyan dashed lines) (reproduced from

(Renault-Laborne et al., 2018))

materials. Dislocation channels may indeed interact with grain boundaries and favor the mechanism

of Irradiation Assisted Stress Corrosion Cracking (IASSC) (McMurtrey et al., 2011). Moreover the85

Transmission Electron Microscope (TEM) observations of deformed radiation-damaged stainless steels

in figures 1a and 1b suggest that dislocation channels may also interact with other irradiation induced

defects such as nanometric voids or bubbles. Elongated voids inside channels indicate possible large

local strains.

In this study a reduced finite strain micromorphic single crystal plasticity model is used to de-90

scribe slip band localization in single crystals. The novelty of the approach lies first in the analytical

derivation of closed form solutions obtained from a micromorphic crystal plasticity theory in case

of single slip associated to linear hardening and softening behaviours. It is demonstrated that this

kind of model predicts an increasing and unbounded localization slip band width when a saturation

of softening is reached. Second, an enhanced micromorphic crystal plasticity model, involving an95

evolving length scale, is then proposed that predicts a bounded localization slip band width for real-

istic saturating softening behaviours. Finally, the enhanced model is applied to study the interaction

between localization slip bands and voids that may exist or nucleate in irradiated materials. For that

purpose a 2D plane strain periodic porous unit cell containing one void is loaded in simple shear with

the shearing direction parallel to the single slip direction. A simple exponential softening behaviour100

is used in order to model softening due to irradiation defects clearing by the DCD mechanism. The

relative influence on localization of the intrinsic length scale of the micromorphic crystal plasticity

model and of the void size and effective void volume fraction inside the localization slip band are
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assessed.

The paper is outlined as follows. In section 2 the main features of the micromorphic crystal105

plasticity model are presented and analytical reference solutions for single crystals under simple shear

are derived, assuming single slip and linear hardening behaviour. An analytical solution for linear

softening is established showing constant slip band width. An enhanced model is then proposed in

order to keep a bounded localization slip band width for non-linear softening behaviour in section

3. In section 2 and 3, numerical solutions are compared to the analytical solutions. Finite element110

predictions of void / localization band interactions are presented and discussed in section 4 for 2D

plane strain periodic porous unit cells. Concluding remarks follow in section 5.

2. Simple shear in the cases of linear hardening and perfect plasticity

The model used in the next sections is taken from (Ling et al., 2018) and synoptically recalled

hereafter. It is based on initial formulations by Wulfinghoff and Böhlke (2012); Erdle and Böhlke115

(2017) and finite deformation extensions from (Forest, 2016). Underline A and under-wave bold

A∼ symbols refer to vectors and second-order tensors, respectively. Dyadic product, outer product,

double contraction and tensorial product are respectively written A .B , A ∧ B , A∼ : B∼ and A ⊗
B . Transposition, inversion, inversion followed by transposition and time derivation are respectively

written A∼
T , A∼

−1, A∼
−T , Ȧ∼ .120

2.1. A reduced micromorphic single crystal plasticity model at finite deformations

Let us consider a crystalline continuum for which each material point can uniquely be defined

by a position vector X in the reference configuration Ω0 and a position vector x in the current

configuration Ω. Following the micromorphic approach of (Germain, 1973; Forest, 2016), at time

t, the degrees of freedom (DOF) of the material point are described by the field of displacement

vector u (X , t) and an additional microslip scalar field γχ(X , t). This additional field of degrees of

freedom γχ, which comes in addition to usual constitutive internal variables, is introduced to refine

the kinematical description at a given material point X :

DOF = {u , γχ}. (1)

In the present work, the micromorphic variable γχ is akin to a cumulative plastic slip variable within

the micromorphic approach (Forest, 2016). It will serve as an auxiliary variable for a convenient

numerical implementation of strain gradient plasticity.

The Lagrangian gradients of the degrees of freedom are:125

H∼ (x , t) =
∂u

∂X
= Gradu , (2)

K (x , t) =
∂γχ
∂X

= Grad γχ, (3)
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where the displacement gradient H∼ is directly related to the deformation gradient F∼ by F∼ = 1∼ +H∼ ,

and K is referred to as the microslip gradient vector. We introduce the following stresses:

S∼ =
ρ0
ρ
σ∼ .F∼

−T , (4)

M =
ρ0
ρ
F∼

−1.m , (5)

S =
ρ0
ρ
s. (6)

where S∼ is the Boussinesq (or first Piola-Kirchhoff) stress tensor which generates mechanical power

with Ḟ∼ and σ∼ the Cauchy stress tensor which generates power with Ḟ∼ .F∼
−1. The vectors M and m

are generalized stresses with respect to the reference and current configuration, respectively. They

are respectively conjugate to K̇ and K̇ .F∼
−1 in the power of internal forces, see (Ling et al., 2018).

Similarly, S and s are the generalized stresses in the reference and current configurations which

generate power with γ̇χ. The balance laws for momentum and generalized momentum take the form

DivS∼ = 0 , ∀X ∈ Ω0, (7)

DivM − S = 0, ∀X ∈ Ω0, (8)

where Ω0 is the reference configuration of the body. The associated boundary conditions read

T = S∼ .n 0, ∀X ∈ ∂Ω0, (9)

M = M .n 0, ∀X ∈ ∂Ω0, (10)

where T is the surface traction vector which generates power over Ḟ∼ . M is the generalized surface

traction which generates power over K̇ . Vector n 0 is the normal to the surface element of the

boundary ∂Ω0 of the body. The multiplicative decomposition of the deformation gradient F∼ is adopted

F∼ = E∼ .P∼ , (11)

where E∼ denotes its elastic part and P∼ its plastic part. The local intermediate configuration C]

consists in the transport of the local reference configuration by the tensor P∼ . The local current

configuration C consists in the transport of the reference configuration C0 by F∼ , or equivalently the

transport of C] by E∼ . γs is the plastic slip on a system s defined by its Schmid tensor N∼
s = ` s⊗n s

where n s is the normal to the slip plane and ` s the slip direction. P∼ is related to the plastic slips by

Ṗ∼ .P∼
−1 =

N∑

s=1

γ̇sN∼
s, (12)

where N is the total number of slip systems. The elastic Green-Lagrange strain measure E∼
e
GL

is

introduced as

E∼
e
GL

=
1

2

(
E∼
T .E∼ − 1∼

)
. (13)

A plastic cumulated slip measure γcum is now defined as

γcum =

∫ t

0

N∑

s=1

|γ̇s|dt. (14)

6



The relative plastic slip e quantifies the difference between cumulated plastic slip and microslip with

e(X , t) = γcum − γχ. (15)

γχ is the micromorhpic counterpart of γcum, they have identical physical interpretation.

A free energy density function ψ is chosen in the form:

ρψ(E∼
e
GL
, e,K∼ , γcum) =

1

2

ρ

ρ]
E∼
e
GL

: C
≈

: E∼
e
GL

+
1

2

ρ

ρ0
Hχe

2 +
1

2

ρ

ρ0
AK T .K + ρψh(γcum), (16)

C
≈

is the fourth rank tensor of elastic moduli, Hχ a penalty modulus, A a higher order modulus and

ρ0, ρ] and ρ are volumetric mass densities in the reference, intermediate and final local configuration

respectively. The function ψh(γcum) is a hardening potential which will take various forms in the

following sections. For simplicity a quadratic and isotropic form was assumed for the gradient K

contribution in the free energy potential, leading to a single higher order modulus A. If the penalty

modulus Hχ is large enough, the variable γχ is almost equal to γcum. In that case, the gradient K of

γχ does not significantly differ from the gradient of the cumulated slip variable γcum. In the following

sections the following approximation will be used:

γχ ' γcum,
∂γχ
∂X

' ∂γcum
∂X

,
∂2γχ

∂X 2 '
∂2γcum

∂X 2 . (17)

When the penalty modulus Hχ takes a high enough value, γχ is almost equal to γcum. The micro-130

morphic model then reduces to a SGP model (Forest, 2009). The following state laws are postulated,

identically fulfilling the second law of thermodynamics:

Π∼
e = C

≈
: E∼

e
GL
, (18)

S = −Hχe, (19)

M = AK , (20)

where the Piola (or second Piola-Kirchhoff) stress tensor Π∼
e is defined with respect to the intermediate

configuration C] by Π∼
e =

ρ]
ρ
E∼

−1.σ∼ .E∼
−T =

ρ]
ρ0
E∼

−1.S∼ .P∼
T . The Mandel stress Π∼

M is introduced with

respect to the intermediate configuration by Π∼
M = E∼

T .E∼ .Π∼
e, in order to compute the resolved

shear stress τs by τs = Π∼
M : N∼

s. In contrast to strict strain gradient plasticity, the higher order

micromorphic stresses are uniquely defined in the elastic part of the structure. Whereas the slip

variable γ vanishes in the elastic part, the microslip γχ can be different from zero. This occurs close

to the boundary with the plastically active domain.

According to the second law of thermodynamics, the residual dissipation inequality is obtained as

N∑

s=1

(
|τs|+ ρ]

ρ
s− ρ]

dψh
dγcum

)
|γ̇s| > 0. (21)

Hence the yield function fs for each slip system s is introduced with

fs = |τs|+ ρ]
ρ
s− ρ]

dψh
dγcum

− τ0 = |τs| −
(
τ0 −

ρ]
ρ
s+ ρ]

dψh
dγcum

)
, (22)
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where τ0 is the initial critical resolved shear stress, which is assumed for brevity to be the same for all

slip systems. For conciseness hardening is here assumed to be a function of γcum only. Noticing that

ρ] = ρ0 due to plastic incompressibility, from (6) one has
ρ]
ρ s = S. Accordingly, a rate-dependent law

is chosen for the plastic slip rates

γ̇s = sign (τs) γ̇0

〈 |τs| −
(
τ0 − S + ρ]

dψh
dγcum

)

τ0

〉n

. (23)

where γ̇0 and n are viscosity parameters.

2.2. Analytical reference solutions for linear hardening and perfect plasticity

As a simple reference analysis of this model we propose to study the problem of a periodic unit cell135

loaded in simple shear and undergoing single slip for linear hardening and perfect plasticity behaviours.

Predictions of the model are derived analytically in the rate-independent case and used to validate

the finite element computations performed with the finite element solver Z–set (Besson and Foerch,

1997; Z–set package, 2013).

2.2.1. Geometry and boundary conditions140

slip plane

slip dir.

W

L

x1

x2

O

Fig. 2: Periodic unit cell of width W along X 1, length L along X 2, and thickness T along X 3

Let us consider the periodic unit cell of width W in X 1, length L in X 2 and thickness T in

X 3 = X 1 ∧X 2 directions shown in figure 2. As in (Ling et al., 2018), the problem of simple shear

with a unique slip system (` ,n ) aligned with the shearing direction is considered (` = X 1 and

n = X 2). A macroscopic (average) transformation gradient F∼ is applied such that

u = (F∼ − 1∼).X + v (X ), (24)

with F∼ = 1∼ + F 12` ⊗ n , (25)
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where v is a periodic function of periodicity W in X 1 direction, L in X 2 direction and T in X 3145

direction. At origin point O zero displacements are imposed in the three directions such that

u (X1 = 0, X2 = 0, X3 = 0) = 0 . (26)

In order to enforce existence of gradients of the microslip γχ along X 2 and thus evidence the bound-

ary layer formation, Dirichlet boundary conditions along X 2 are applied while periodic boundary

conditions along X 1 and X 3 are considered

γχ (X1 = 0, X2, X3) = γχ (X1 = W,X2, X3) , (27)

γχ

(
X1, X2 = ±L

2
, X3

)
= 0, (28)

γχ

(
X1, X2, X3 = −T

2

)
= γχ

(
X1, X2, X3 =

T

2

)
. (29)

Analytical solutions are first obtained in the case of linear hardening (H > 0) and perfect plasticity

(H = 0) corresponding to the following form of the hardening potential:

ρψh(γcum) =
1

2

ρ

ρ0
Hγ2cum, (30)

where γcum = |γ| in the case of monotonic single slip for which the superscript s is dropped, and H is150

the hardening modulus. In the reference configuration, the equations that need to be satisfied are the

balance laws (7), (8) and yielding condition (22). From (12) one has in simple shear with a single slip

system that P∼ = 1∼ + γ` ⊗n . Inspired from the work of (Gurtin, 2000), with F∼ = E∼ .P∼ , we make the

assumption of small elastic deformations in the absence of lattice rotation expected in the considered

slip configuration, i.e E12 � 1 with E∼ = F∼ .P∼
−1 = 1∼ + E12l ⊗ n . Hence one obtains:155

E∼
e
GL

' E12

2
(l ⊗ n + n ⊗ l ) , (31)

and also Π∼
e = C∼∼

: E∼
e
GL
' Πe

12 (l ⊗ n + n ⊗ l ) where C∼∼
is the elasticity tensor. It follows from the

definition of Mandel’s stress Π∼
M = E∼

T .E∼ .Π∼
e and the small elastic strain assumption that Π∼

M ' Π∼
e,

and thus, dropping the superscript for the unique system s, one has

τ = Π∼
M : (` ⊗ n ) ' Π∼

e : (` ⊗ n ). (32)

Hence one obtains Πe
12 ' τ . The assumption of small elastic deformations yields also S∼ ' Π∼

e.P∼
−T .

Note that P∼ is of the form P∼ = 1∼ + γ` ⊗n , hence P∼
−T = 1∼− γn ⊗ ` and the balance equation (7)

rewrites

Div (Π∼
e − γΠ∼

e.(n ⊗ ` )) = 0 , (33)

which yield, when projected along X 1 and X 2

∂τ

∂X2
− ∂(γτ)

∂X1
= 0, (34)

∂τ

∂X2
= 0. (35)
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From the periodic boundary conditions (27) and (29), and arbitrariness of the width W and thickness

T , invariant solutions alongX 1 andX 3 will be sought, i.e. γχ(X1, X2, X3) = γχ(X2). Similarly, from

(17) γ is also invariant along X 1 and X 3. As a consequence equation (34) and (35) give respectively

that τ is invariant along X 1 and X 2. Since the periodic unit cell can be considered arbitrarily thin

along X 3 without loss of generality, τ is also invariant along X 3. Hence τ is uniform in the periodic

unit cell:

τ(X1, X2, X3) = τ. (36)

Combining (19) and (20) with (8) leads to the differential equation governing the microslip

A
d2γχ
dX2

2

= Hχ(γχ − γ). (37)

From the homogeneity of the shear stress in the unit cell, when yielding occurs the whole unit cell

becomes plastic and the yield condition (22) leads to f = |τ |− (τ0 +Hγ+Hχ(γ−γχ)) = 0. Combined

with (37) one obtains another form of the differential equation governing the microslip

A
d2γχ
dX2

2

− HHχ

H +Hχ
γχ +

Hχ

H +Hχ
(|τ | − τ0) = 0. (38)

Since the shear stress τ is uniform in the unit cell, the differential equation (38) governing the microslip160

is a second-order, linear, in-homogeneous differential equation with constant coefficients. It is elliptic

if H > 0 and parabolic if H = 0.

2.2.2. Linear hardening (H > 0)

In the case of linear hardening Eq. (38) takes the form

d2γχ
dX2

2

−
(

2π

λ0

)2

γχ = −
(

2π

λ0

)2

κ, (39)

where λ0 and κ are constants defined by:165

λ0 = 2π

√
A(H +Hχ)

|H|Hχ
, assuming H +Hχ ≥ 0 (40)

κ =

(
λ0
2π

)2
Hχ(|τ | − τ0)

A(H +Hχ)
. (41)

Note that for large values of the penalty parameter Hχ, one has Hχ � H and the intrinsic length

λ0 ' 2π
√
A/H, which is the expression for the strain gradient plasticity model. For a strictly positive

linear hardening, the solutions of (39) are of the form

γχ(X2) = α cosh

(
2π
X2

λ0

)
+ β sinh

(
−2π

X2

λ0

)
+ κ, (42)

where α and β are integration constants. For symmetry reasons γχ(X2) = γχ(−X2) which leads to

β = 0 and α is uniquely determined from boundary condition (28):

α = − κ

cosh
(

2π
λ0

L
2

) , (43)
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which finally leads to

γχ = κ


1−

cosh
(

2π
λ0
X2

)

cosh
(

2π
λ0

L
2

)


 . (44)

Since F∼ = E∼ .P∼ = (1∼ +E12(l ⊗n )).(1∼ + γ(l ⊗n )) ' (1∼ + (E12 + γ)(l ⊗n )) from (31) and (36) one

has

τ = Πe
12 = 2C44E

e
GL,12 =

2C44

L

∫ L
2

−L
2

(
F12 − γ

2

)
dX2, (45)

where C44 denotes the elastic shear modulus. From yielding condition (22) γ can be replaced by170

|τ | − τ0 +Hχγχ
H +Hχ

in (45) and the integration provides an expression of τ as a function of the applied

macroscopic (average) shear F 12 and material parameters:

τ =
F 12 + τ0

Zh
1
C44

+ 1
Zh

, (46)

where
1

Zh
=

1

H
−

2Hχ tanh
(

2π
λ0

L
2

)

L 2π
λ0
H(H +Hχ)

. (47)

2.2.3. Perfect plasticity (H = 0)

For the case of perfect plasticity, H = 0, the same periodic and Dirichlet type boundary value

problem as in the previous section is studied. In that case the differential equation (38) becomes

d2γχ
dX2

2

+
|τ | − τ0
A

= 0. (48)

The analytical reference solution in case of perfect plasticity is thus of polynomial form

γχ(X2) =
τ0 − |τ |

2A
X2

2 + αX2 + β, (49)

where α and β are integration constants, which are uniquely determined from boundary conditions

α = 0 and β = −τ0 − |τ |
8A

L2, (50)

which finally leads to

γχ(X2) =
τ0 − |τ |

2A

(
X2

2 −
(
L

2

)2
)
. (51)

This solution is also obtained when computing the Taylor expansion at order two of (44) with H going175

to zero, i.e λ0 going to infinity and X2/λ0 going to 0. Using the uniformity of the shear stress in the

unit cell, equation (45) leads now to

τ =
F 12 + τ0

Zp
1
C44

+ 1
Zp

, (52)

where
1

Zp
=

1

Hχ
+

L2

12A
, (53)

which is also obtained with the Taylor expansion of (47) when H goes to zero. In the case of strictly

positive linear hardening a boundary layer solution is obtained. The size of the boundary layer depends

11



Table 1: Numerical values of material and unit cell parameters.

C11 C12 C44 τ0 A Hχ n γ̇0 L

200 GPa 136 GPa 105 GPa 10 MPa 1 N 105 MPa 15 1017 s−1 1 mm

on the ratio between the material length scale λ0 and the size L of the unit cell. In the case of perfect180

plasticity, it appears that the size of the plastic zone, or in other words the radius of curvature of the

parabola, depends not only on the higher order modulus A but also on the size L of the unit cell.

The analytical solutions (44) and (51) are used to validate the finite element solution of the same

boundary value problem. The unit cell is discretized regularly in 101 elements (reduced integration

with eight Gauss points). The interpolation is quadratic for the displacements u and linear for γχ.185

Cubic elasticity is considered and C11, C12 and C44 denote the elasticity moduli. Table 1 gathers the

material parameters that have been used for validation in case of linear hardening H = 1000 MPa and

perfect plasticity H = 0 MPa. Figure 3 shows the finite element and analytical solutions at F 12 = 1%.

Viscosity parameters γ̇0 and n have been chosen such that the response is almost rate-independent.

The viscous part of the stress is equal to τ0(γ̇/γ̇0)1/n. With the chosen values of the parameters, it is190

more than 20 times lower than the critical resolved shear stress in the range of strain rates considered

here. A perfect agreement is also obtained for any other value of F 12.
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Fig. 3: Analytical (black line) and finite element (red crosses) solutions of differential equation (38) with: (a) a strictly

positive linear hardening (H = 1000 MPa) and (b) perfect plasticity (H = 0 MPa) at F 12 = 1%

3. Simple shear in the case of softening behaviour

This section is dedicated to the prediction of the micromorphic crystal plasticity model for soft-

ening behaviour and in particular to the formation of localization slip bands. As mentioned in the195

introduction strain gradient models can be used to regularize strain localization phenomena by in-

troducing one or several characteristic lengths. It is shown here how the model presented in section
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2 incorporates an intrinsic length that, in case of single slip and linear softening, is related to the

localization slip band width. Then non-linear saturating softening behaviour are shown to trigger an

increasing slip localization band width. An enhanced model is then proposed in order to bound the200

localization band width and thus confine the localization zone when the softening behaviour tends

toward perfect plasticity.

3.1. Linear softening (H < 0)

Let us now consider a linear softening behaviour (H < 0 in the hardening potential (30)). The

same boundary conditions (27), (28) and (29) as in previous section are kept. Because of the material205

softening a plastic instability is expected. Therefore a solution with localized plastic deformation over

a width λ along X 2 and centered at O is sought for. In the plastic zone the yield condition is satisfied

while γ̇ is zero in the elastic zone

f = 0 ∀X2 ∈
[
−λ2 ; λ2

]
, (54)

γ̇ = 0 ∀X2 ∈
[
−L2 ;−λ2

]
∪
[
λ
2 ; L2

]
. (55)

The differential equation (38) governing γχ is only valid in the region X2 ∈
[
−λ2 ; λ2

]
and the solutions

are of the form210

γχ(X2) = α cos

(
2π
X2

λ0

)
+ β sin

(
2π
X2

λ0

)
+ κ. (56)

For symmetry reasons γχ(X2) = γχ(−X2), hence β = 0. Out of the plastic zone γ(X2) = 0 and at the

elastic/plastic interfaces, i.e at X2 = ±λ2 , continuity of microslip γχ and of generalized stress normal

to the interface M .X 2 must hold, hence

γχ

(
±λ

2

)
' γ

(
±λ

2

)
= 0, (57)

M

(
±λ

2

)
.X 2 = A

dγχ
dX2

∣∣∣
X2=±λ

2

= 0. (58)

Combining (57) and (58) with (56) one gets

α =
|τ | − τ0
H

, (59)

λ = λ0. (60)

Hence it is shown that, for Hχ � H, the material parameters H and A fully determine the width215

λ = λ0 '
√
A

H
of the localization slip band that arises in single slip with a linear softening behaviour.

This is in contrast to the parabolic case of the previous section for which the plastic zone size depends

on the length of the unit cell. From (45) the uniform shear stress writes

τ =
F 12 + τ0

Ze
1
C44

+ 1
Ze

, (61)

where
1

Ze
=

λ0
HL

. (62)
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Fig. 4: Analytical (black line) and finite element (red crosses) solutions of differential equation (38) with a linear negative

hardening (H = −250 MPa) at F 12 = 1%

In the case of strictly negative linear softening the localized solution obtained is a cosine profile. The

period of the cosine function is a material parameter and it is equal to the width of the localization220

band. If the length L of the unit cell is larger than λ0 the period of the cosine function is then equal

to L.

Numerically, in order to trigger the localization instability in the center of the periodic unit cell,

a defect is introduced in its middle. It consists in a single element having an initially slightly lower

critical resolved shear stress τdefect0 taken equal to 99% of τ0. The analytical solution (56) is used to225

validate the finite element solution of the same boundary value problem using the same mesh as in

section 2. Figure 4 shows both solutions at F 12 = 1%. A perfect agreement is also obtained for any

other value of F 12.

3.2. Non-linear softening and localization slip band widening

A linear softening behaviour is useful to establish analytical reference solutions, but is of limited230

interest for modelling softening in real materials at large deformations. In order to model any given

saturating softening behaviour, for example the clearing of Frank dislocation loops inside dislocation

channels relevant for irradiated materials, we propose to introduce in (16) a non-linear exponential

softening by means of the hardening potential

ρψh = − ρ

ρ0
τaγ0 exp

(
−γcum

γ0

)
. (63)

This kind of softening is similar to the phenomenological dislocation unpinning model proposed by

Ling et al. (2017). The goal of the present subsection is to evidence the broadening of the localization
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band when such a non-linear softening behaviour is adopted inside the formulation presented in section

2. An enhanced model is then proposed in order to bound a priori the localization slip band width

when considering linear and non-linear softening behaviours. (Zbib and Aifantis, 1988) evidenced the

narrowing of localization shear bands by adopting a concave parabolic hardening. However, parabolic

softening is unrealistic at large strains and is not used in the present work. As shown in the previous

subsection, for simple shear in single slip, a constant band width is obtained in case of a linear

softening. Hence a slip band width widening is expected to occur due to the increase of the (negative)

tangent softening modulus of the softening proposed in equation (63). The yield condition (22) in the

particular case of a non-linear exponential hardening writes:

fs = |τs| −
(
τ0 −Hχ(γχ − γcum) + τaγ0 exp

(
−γcum

γ0

))
= 0. (64)

The solution in terms of γcum for yielding condition (64) involves the Lambert W function2. Finally

γcum is eliminated from the differential equation (37) which provides

A
d2γχ
dX2

2

+Hχγ0W
(
− τa
Hχγ0

exp

(
τ0 − |τ | −Hχγχ

Hχγ0

))
= τ0 − |τ |. (65)

This differential equation cannot be solved analytically, however a local analysis in the neighbourhood235

of a given point X = X 0 suffices to prove the widening of the localization band. The function
dψh

dγcum
is then approximated by its Taylor expansion in X 0 with

dψh
dγcum

(γcum) ' H0
T (γcum − γcum(X0

2 )) +
dψh

dγcum
(γcum(X0

2 )), (66)

with H0
T =

d2ψh
dγ2cum

(γcum(X0
2 )). (67)

This expression can be substituted in (22) and the same analysis as in previous subsection leads then

to a local characteristic length scale λ which is similar to the case of linear softening

λ = 2π

√
A(H0

T +Hχ)

|H0
T |Hχ

' 2π

√
A

|H0
T |
. (68)

|H0
T | decreases when γcum(X0

2 ) increases and ranges in

]
0;
τa
γ0

]
. γcum reaches its maximum at the240

center of the defect (X0
2 = 0), so λ is maximum at X0

2 = 0 and goes to infinity when softening

saturates, i.e. when γcum(X0
2 ) goes to infinity and |H0

T | goes to 0. Finally this proves that the

localization band width tends to increase when increasing F 12. This result has been verified by

computing the finite element solution of the γχ profile for the exponential softening potential (63).

Figure 5 shows the numerical solution obtained for different values of F 12. Eventually for large values245

of γcum the localization slip band edges reach the boundary of the periodic unit cell and plastic

deformation tends to become homogeneous. This feature of localization slip band broadening is not

acceptable when trying to simulate continuing localization at plastic strains much greater than the

softening saturating strain (γcum � γ0).

2For z ∈ C, and the function f : z 7→ zez , the Lambert W function is defined as the inverse function of f , i.e such

that for z ∈ C, z = f−1 (zez) =W (zez)
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Fig. 5: Finite element solution of equation (37) for an exponential softening behaviour displaying localization band

width widening

3.3. An enhanced model for a bounded localization slip band width250

An enhanced micromorphic crystal plasticity model is therefore proposed in order to bound a

priori the localization slip band width when solving the problem of simple shear in single slip. Up

to now A was taken as a constant material parameter, while hardening was taken into account with

the hardening potential ψh(γcum). Here a dependence of the higher order modulus A with respect to

γcum is introduced in the form:255

A(γcum) = −
(

Λ0

2π

)2

ρ]
d2ψh
dγ2cum

, (69)

where Λ0 has the dimension of a length. The corresponding Lagrangian potential (16) writes:

ρψ =
1

2

ρ

ρ]
E∼
e
GL

: C
≈

: E∼
e
GL

+
1

2

ρ

ρ0
Hχe

2 +
1

2

ρ

ρ0
A(γcum)K T .K + ρψh(γcum). (70)

By virtue of the second law of thermodynamics the state laws (18) and (19) still hold and (20) becomes

M = A(γcum)K . (71)

The residual dissipation inequality is now

N∑

s=1

(
|τs|+ ρ]

ρ
s− ρ]

dψh
dγcum

− 1

2

dA

dγcum
K T .K

)
|γ̇s| > 0. (72)

An enhanced yield function is proposed in the form

fs = |τs| −
(
τ0 −

ρ]
ρ
s+ ρ]

dψh
dγcum

+
1

2

dA

dγcum
K T .K

)
. (73)
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It can be seen that the introduction of an evolving higher order modulus induces additional apparent

hardening in the expression of the effective critical resolved shear stress. For the problem of single

slip considered here superscript s is dropped and combining (71) with the balance equation (8) and260

yielding condition (73) one obtains the general differential equation inside the plastic zone [−λ2 ; λ2 ]

A(γcum)
d2γχ
dX2

2

=
1

2

dA

dγcum

(
dγχ
dX2

)2

− dA

dγcum

dγcum
dX2

dγχ
dX2

+ τ0 + ρ]
dψh

dγcum
− |τ |. (74)

At this step it is straightforward to show that (73) and (74) reduce respectively to (22) and (39)

in case of a linear hardening/softening behaviour (ψh(γcum) = 1
2Hγ

2
cum). In that case Λ0 = λ and

the solutions of this equation have been detailed in sections 2.2.2, 2.2.3 and 3.1. For an exponential

softening behaviour of the type proposed in (63) one has265

ρ]
dψh

dγcum
= τa exp

(
−γcum

γ0

)
and A(γcum) =

(
Λ0

2π

)2
τa
γ0

exp

(
−γcum

γ0

)
. (75)

Note that A(γcum) ≥ 0 such that the free energy potential is convex with respect to the microslip

gradient. Two approximations allow us to derive an approximate closed form solution to differential

equation (74).

Approximation 1

At initiation of plastic slip, gradients along X 2 of cumulated plastic slip and microslip are close to270

zero. Therefore we propose to neglect the first and second terms of the right-hand side of differential

equation (74) that involve quadratic terms of these gradients. The approximate differential equation

becomes

A(γcum)
d2γχ
dX2

2

= τ0 + ρ]
dψh

dγcum
− |τ |. (76)

Approximation 2

The analytical solutions are derived in the limit case of SGCP, i.e. when the penalty factor Hχ

of the micromorphic model is large enough. Therefore combining (75) with approximated differential

equation (76) and approximations (17), one gets

(
Λ0

2π

)2
τa
γ0

exp

(
−γcum

γ0

)
d2γcum

dX2
2

= τ0 + τa exp

(
−γcum

γ0

)
− |τ |. (77)

With the variable substitution275

Γ = exp

(
−γcum

γ0

)
, (78)

the derivatives with respect to X2 are rewritten as

dΓ

dX2
= − 1

γ0
exp

(
−γcum

γ0

)
dγcum
dX2

, (79)

and
d2Γ

dX2
2

=
1

γ20
exp

(
−γcum

γ0

)(
dγcum
dX2

)2

− 1

γ0
exp

(
−γcum

γ0

)
d2γcum

dX2
2

(80)

' − 1

γ0
exp

(
−γcum

γ0

)
d2γcum

dX2
2

. (81)
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where quadratic terms of the gradient of cumulated plastic slip are again neglected. The differential

equation governing Γ is then derived from Eq. (77) as

d2Γ

dX2
2

+

(
2π

Λ0

)2

Γ =

(
2π

Λ0

)2 |τ | − τ0
τa

. (82)

Its solutions are of the form

Γ(X2) = α cos

(
2π
X2

Λ0

)
+ β sin

(
2π
X2

Λ0

)
+
|τ | − τ0
τa

, (83)

where α and β are integration constants. Inserting the latter result into the yield condition f = 0 one280

has

γχ(X2) =
τ0 − |τ |
Hχ

+
τa
Hχ

Γ(X2)− γ0 ln(Γ(X2)). (84)

For symmetry reasons γχ(X2) = γχ(−X2), hence β = 0. Combining (57) and (58) one obtains

λ = Λ0, (85)

α =
|τ | − (τ0 + τa)

τa
. (86)

The approximated analytical solution (84) is compared to the finite element solution of the same

boundary value problem using the full model and using the same mesh as in section 2. Figure 6

shows both solutions at F 12 = 0.05% and F 12 = 0.1%. Since approximation 1 is only valid close to285

initiation of plastic slip, agreement between analytical and numerical results deteriorates when F 12

increases. Nevertheless one should notice that close to the elastic/plastic interfaces a good agreement

is obtained because gradients of cumulated plastic slip and microslip remain small in these regions.

As a consequence the width of the localization zone obtained numerically remains bounded and close

to the one derived analytically and given by (85). Figure 7 displays in dashed lines the finite element290

solution obtained with the expression of A(γcum) expressed at (69) in case of an exponential softening

for different values of F 12 (F 12 ∈ {0.001, 0.002, 0.003, 0.004}). The solid curves on figure 7 are the

one plotted in figure 5 used to show localization band widening when a constant value of A is taken.

The proposed expression of A(γcum) allows to bound the localization band width at any strain

when considering an exponential softening3. However it can be observed from figure 7 that while295

the size of the region where plastic slip occured is fixed, the size of the region of continuing plastic

flow decreases for further straining F 12. The latter region becomes vanishingly thin since its size

is proportional to the square root of higher order modulus A which, according to Eq. (75), tends

to zero for increasing plastic slip. This means that the classical crystal plasticity model, without

regularization, is retrieved. To that extent, the band width becomes close to the mesh size in the300

finite element simulation.

3Results not shown here indicate that a bounded localization band width is obtained also when considering a bi-linear

(softening followed by a plateau) behaviour.

18



0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

−0.4 −0.2 0 0.2 0.4
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

−0.4 −0.2 0 0.2 0.4
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

−0.4 −0.2 0 0.2 0.4
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

−0.4 −0.2 0 0.2 0.4
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

−0.4 −0.2 0 0.2 0.4

γχ

X2/L

Numerical

γχ

X2/L

Numerical

γχ

X2/L

Numerical

Analytical

γχ

X2/L

Numerical

Analytical

γχ

X2/L

Numerical

Analytical

F 12 = 0.05%

F 12 = 0.1%

Fig. 6: Analytical (black line) and finite element (red crosses) solutions of differential equation governing γχ at F 12 =

0.05% and F 12 = 0.1%, when considering the non-linear softening behaviour (63) and the constitutive function (69) for

A(γcum)
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4. Application to irradiated voided crystals: void/slip band interaction

As shown in (Fish et al., 1973) and on figure 1b, irradiation induced nanovoids may be heavily

sheared inside dislocation channels during straining. The objective here is to study the possible

interactions between these voids and such localization bands from a continuum mechanical perspective.305

It is shown experimentally in (Farrell et al., 2003) and numerically in (Cui et al., 2018) that essentially

one single slip system is active inside such a dislocation channel. Therefore a single slip system is

considered in the following. A periodic distribution of voids in a plate is considered for simplicity.

Interactions between voids and localization bands are analyzed in the finite element simulation of a

single unit cell with appropriate periodic boundary conditions.310

4.1. Finite element meshes, loading and boundary conditions

The periodic unit cell is made of a one-element thick square plate of width and height L in direction

X 1 and X 2 and thickness T along X 3. A cylindrical hole of radius R is located at the center, see

Fig. 8. Regular meshes consist of hexahedral elements which are quadratic in displacements u

and linear in γχ (reduced integration with eight integration points). In the same way as in previous315

section, an average deformation gradient F 12 is prescribed to the unit cell with fully periodic boundary

conditions. This corresponds to the same macroscopic simple glide deformation field (25) as in the

previous section. The microslip variable γχ is taken periodic along all three directions. A unique

slip system (` ,n ) aligned with the shearing direction 1 is considered (` = X 1 and n = X 2). An

exponential softening behaviour of type (63) is used and equation (69), and more precisely (75), are320

adopted for the evolution of the higher order modulus A(γcum). Cubic elasticity is considered and

table 2 gathers the numerical values of fixed material parameters used for all the simulations.
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Table 2: Numerical values of material parameters for the simulation of periodic porous unit cells

C11 C12 C44 τ0 τa γ0 Λ0 Hχ n γ̇0

200 GPa 136 GPa 105 GPa 235 MPa 35 MPa 0.1 100 nm 106 MPa 15 1020 s−1

Table 3: Discrete values of parameters of interest in the simulation of slip band/void interactions

χ0 = 2R/L q0 = R/Λ0

[0.2, 0.4] [1/18, 1/12, 1/9, 1/6, 1/3]

4.2. Choice of geometrical and material parameters

The initial void volume fraction is defined as

fband0 =
πR2T

2RLT
=
πR

2L
, (87)

which represents the ratio between the volume of the cylindrical hole to the volume of the box of edge325

length L along X 1 and 2R along X 2 as plasticity is expected to localize in that region. In fact this

void volume fraction is proportional to the intervoid spacing ratio χ0 defined as

χ0 =
2R

L
. (88)

The ratio q0 of the intrinsic length to void size is defined as

q0 =
R

Λ0
. (89)

where the constitutive intrinsic length Λ0 enters Eq. (69). For convenience purposes in the following

χ0 will referred to as the porosity and q0 as the normalized void size.330

Throughout all simulations Λ0 is fixed to 100 nm which corresponds to an upper bound of the

dislocation channels width observed in irradiated steels. Noting that according to (Farrell et al.,

2003), the greater the irradiation dose the wider and the fewer the dislocation channels. Such a size

is at the limit of continuum mechanical modeling. It is therefore assumed that there are enough

dislocation sources in these bands for strain gradient continuum crystal plasticity to be applicable.335

Table 3 gathers the discrete values retained for the parameters χ0 and q0 in the following simulations.

4.3. Results

Figure 9 shows the results obtained for a macroscopic shear strain F 12 = 0.15. Very large strains

are reached inside the localization band in accordance with the large deformation setting of the theory340

and finite element implementation. It is important to note that local strains may significantly exceed

the maximum value of the cumulated plastic strain γcum of the legend bar. Also for visualization

purposes all unit cells are displayed with the same size for a given void volume fraction, even though

the actual hole and cell sizes are varied.
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Sat Mar 16 08:20:57 2019
  /volatile/home/jmscherer/Documents/These/Plate/Hole/Single_slip/Non_local_exponential/New/NONL_X0.2_LR9_TS0_D0_CUBIC/dA_dgcumKK/X02_LR9.ps

(e) χ0 = 0.2 and q0 = 1/9

Zebulon 9.x.0 -  plate

Sat Mar 16 10:56:09 2019
  /volatile/home/jmscherer/Documents/These/Plate/Hole/Single_slip/Non_local_exponential/New/NONL_X0.4_LR9_TS0_D0_CUBIC/dA_dgcumKK/X04_LR9.ps

(f) χ0 = 0.4 and q0 = 1/9

Zebulon 9.x.0 -  plate

Sat Mar 16 08:22:35 2019
  /volatile/home/jmscherer/Documents/These/Plate/Hole/Single_slip/Non_local_exponential/New/NONL_X0.2_LR12_TS0_D0_CUBIC/dA_dgcumKK/X02_LR12.ps

(g) χ0 = 0.2 and q0 = 1/12

Zebulon 9.x.0 -  plate

Sat Mar 16 10:55:15 2019
  /volatile/home/jmscherer/Documents/These/Plate/Hole/Single_slip/Non_local_exponential/New/NONL_X0.4_LR12_TS0_D0_CUBIC/dA_dgcumKK/X04_LR12.ps

(h) χ0 = 0.4 and q0 = 1/12

Zebulon 9.x.0 -  plate

Sat Mar 16 08:15:33 2019
  /volatile/home/jmscherer/Documents/These/Plate/Hole/Single_slip/Non_local_exponential/New/NONL_X0.2_LR18_TS0_D0_CUBIC/dA_dgcumKK/X02_LR18.ps

(i) χ0 = 0.2 and q0 = 1/18

Zebulon 9.x.0 -  plate

Sat Mar 16 10:54:10 2019
  /volatile/home/jmscherer/Documents/These/Plate/Hole/Single_slip/Non_local_exponential/New/NONL_X0.4_LR18_TS0_D0_CUBIC/dA_dgcumKK/X04_LR18.ps

(j) χ0 = 0.4 and q0 = 1/18

Fig. 9: Finite element results showing the interaction of a slip band and a void in a unit cell under average shear at

F 12 = 0.15
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Fig. 10: Normalized localization slip band width λ as a function of F 12 for three different values of parameter q0 and

for χ0 = 0.2. Dashed lines represent the normalized width equal to four times the initial mesh size.
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Fig. 11: Normalized localization slip band width λ as a function of F 12 for three different values of parameter q0 and

for χ0 = 0.4. Dashed lines represent the normalized width equal to four times the initial mesh size.
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Fig. 12: Normalized localization slip band width λ as a function of q0 for two different void volume fractions at the

overall shear value F 12 = 0.025. Insets correspond to snapshots of figure 9i (left) and 9b (right) at F 12 = 0.15

In order to measure the influence of q0 and χ0 on the localization phenomenon, the localization345

slip band thickness is defined as

λ = max
x1=0,x2,x3=0

(
xb2 − xa2 ,∆γcum(xa2) > ∆γmaxcum /15 and ∆γcum(xb2) > ∆γmaxcum /15

)
(90)

where ∆γmaxcum = max
x1=0,x2,x3=0

(∆γcum(x2)). (91)

In other words, the band thickness is measured at 1/15 of the peak strain value. Figures 10 and 11

display the evolution of λ with the macroscopic strain for three values of q0 at χ0 = 0.2 and χ0 = 0.4

respectively. For the two figures the dashed lines correspond to the limit where λ reaches four times

the initial size along X 2 of the largest element inside the localization band. Therefore, results above350

this line can be considered as mesh independent, while it is considered mesh dependent when it goes

below it. For both figures the top dashed line corresponds to q0 = 1/3, the middle dashed line to

q0 = 1/6 and the bottom dashed line corresponds to q0 = 1/18. Figure 12 shows the evolution of λ

with q0 at F 12 = 2.5% for two values of χ0.

4.4. Discussion355

4.4.1. Effect of intrinsic length and hole size on void shape

Figure 9 shows that void shape is significantly impacted both by q0 and χ0. For the lowest values

of q0, i.e. the lowest normalized void sizes, the holes remain elliptical, while they take peanut-like

shapes when their size increases and become comparable with the intrinsic length scale. In addition

increasing the porosity χ0 induces preservation of elliptical void shapes for larger normalized void360

sizes. Eventually even for large void volume fractions peanut-like shapes are obtained. Peanut-like
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void shapes are in good agreement with those observed inside dislocation channels (see figure 1a and

1b). However this agreement is for now only qualitative, and one must note that similar void shapes

can be obtained with standard J2 flow theory.

4.4.2. Effect of intrinsic length and hole size on localized slip band width365

Figure 10 and 11 show that, at a given porosity χ0, larger values of normalized void size q0 induce

thicker localization slip bands. In addition increasing the porosity χ0, for a given normalized void size

q0, decreases the localization slip band width.

Figure 12 shows more precisely that at a low macroscopic shear strain, larger normalized void sizes

and/or smaller porosities induce thicker localization slip bands. The effect of the normalized void size370

can be understood as follows. When the void radius is much lower than Λ0 the width of the localization

zone is mainly governed by the void size. Hence, for small values of q0, λ strongly depends on q0.

However when the void radius is of the order of magnitude of the intrinsic material length scale Λ0 the

width of the localization band is mainly governed by the latter parameter. Therefore a saturation of

the localization band width is observed as q0 increases. The effect of the porosity can be understood375

as follows. For a low porosity χ0 the localization band width λ is expected to be close to the one of the

sound material which has been shown in previous section to be equal to the intrinsic material length

scale Λ0. When increasing porosity χ0, with void radii always smaller than the intrinsic material

length scale (q0 = R/Λ0 < 1), voids are responsible of more intense flow localization and therefore

localization bands are thinner than in the case of the sound material.380

4.4.3. Effect of intrinsic length and hole size on the selection of slip and kink band modes

It can be seen in figure 9 that slip and kink bands, respectively parallel and perpendicular to the

slip direction, initiate where the sheared material cross-section is reduced due to the presence of the

void. In the simulations performed, kink bands were found to have a lower intensity than slip bands. It

was proven by (Asaro and Rice, 1977) that slip and kink bands are equivalently probable at initiation385

of plastic slip for the problem considered. In the post-bifurcation simulations, the results clearly show

that slip bands dominate at least for the considered configurations. This is probably due to the fact

that, in contrast to slip band, kink bands are associated to strong lattice rotation and curvature so

that their structure evolves rapidly with further overall straining Forest (1998); Forest et al. (2001).

The present simulations show that the relative intensity of kink bands decreases when the macroscopic390

strain increases. As expected and according to (Ling et al., 2018) it is found that when decreasing the

normalized void size q0 the regularization power of the gradient model affects both kink and slip bands.

For a given porosity χ0 it is observed that the larger the normalized void size, the lower is the relative

intensity of the kink band compared to the slip band. In addition it can be observed that, for a given

normalized void size, the relative intensity of the kink band increases when increasing the porosity. It395

should be emphasized that the present model incorporates the effect of the spatial derivatives of the

microslip both along and perpendicular to the slip plane. Gradient effects along the slip direction are

related to the densities of geometrically necessary dislocations which are known to be responsible for
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significant size effects. This contribution plays an essential role in the thickness of kink bands (Forest

et al., 2001). In contrast gradient effects perpendicular to the slip planes are less explored even though400

they could be related to cross-slip (or climb at higher temperatures) of dislocations contributing to

the finite thickness of slip band bundles (Neuhäuser, 1983a). The present model is isotropic with

respect to the gradient of slip vector which essentially leads to the same finite thickness for slip and

kink bands (see Ling et al. (2018)). A more elaborate formulation should introduce anisotropy and

include a smaller length scale for slip bands than for kink bands.405

5. Conclusions

The main findings of the present work can be summarized as follows:

1. The predictions of a micromorphic crystal plasticity model in case of single slip linear harden-

ing for a periodic unit cell in simple shear have been established analytically. These analytical

solutions have been used to validate the finite element implementation. Three cases were distin-410

guished: linear hardening, perfect plasticity and linear softening. A fixed localization band width

was shown to emerge in case of linear softening directly related to the higher order modulus of

the micromorphic model.

2. A localization band widening has been observed in the finite element simulations at large strains

when a non-linear saturating softening and a constant higher order modulus are considered. This415

band broadening has not been mentioned in the previous literature on plastic strain localization

because most of the results in the literature are limited to linear softening and do not consider

the saturating regime. It has been observed in the case of damage localization and cracking for

some gradient damage model simulations. Such a broadening of plastic bands is not relevant

for the simulation of continuing localization in slip bands observed for instance in irradiated420

materials.

3. An enhanced model is proposed in order to preserve a bounded localization band width when

a non-linear saturating softening behaviour is used. It is based on a non-constant higher order

modulus which varies with the cumulated plastic slip. Finite element results at large strains

and an approximate analytical solution using such an evolving length scale confirm the absence425

of widening of the localization slip band in simple shear. The proposed constitutive function

A(γcum) is decreasing toward zero which leads to a vanishingly small slip band width in the

saturated regime. This is similar to existing gradient damage models based on an evolving and

vanishing intrinsic length scale at fracture.

4. The enhanced model was applied to the study of void and slip band interaction. The effects of430

normalized void size and porosity versus intrinsic material length scale on the shape of deformed

void, the localization band width, and the localized deformation pattern were illustrated by

systematic micromorphic finite element simulations at large strains. Void shape was shown

to evolve from elliptical towards peanut-like shape when increasing normalized void size or
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decreasing void volume fraction which correspond to the experimental observation (see figure435

1a). This model applied to a porous material has shown that the localization band width

depends simultaneously on the intrinsic material length scale and the void size. Kink bands

and slip bands are always observed at initiation of plastic slip and the relative intensity of slips

bands compared to kink bands increases when increasing the macroscopic shear strain.

Future work will be dedicated to quantify the influence of several other physical parameters like the440

tensile versus shear stress ratio (i.e stress biaxiality), the slip system orientation and the number of

active slip systems.
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Neuhäuser, H., 1983b. Slip-line formation and collective dislocation motion, in dislocations in solids,550

vol 4 edited by F. R. N. Nabarro.

Niordson, C.F., Kysar, J.W., 2014. Computational strain gradient crystal plasticity. Journal of the

Mechanics and Physics of Solids 62, 31–47.

Petryk, H., Stupkiewicz, S., 2016. A minimal gradient-enhancement of the classical continuum theory

of crystal plasticity. Part I: The hardening law. Archives of Mechanics 68, 459–485.555

Poh, L.H., Sun, G., 2017. Localizing gradient damage model with decreasing interactions. International

Journal for Numerical Methods in Engineering 110, 503–522.

Renault-Laborne, A., Hure, J., Malaplate, J., Gavoille, P., Sefta, F., Tanguy, B., 2018. Ten-

sile properties and deformation microstructure of highly neutron-irradiated 316 stainless steels

at low and fast strain rate. Journal of Nuclear Materials 508, 488 – 504. URL: http://560

www.sciencedirect.com/science/article/pii/S0022311518301430, doi:https://doi.org/10.

1016/j.jnucmat.2018.05.068.

Rice, J.R., 1976. The localization of plastic deformation, in: Koiter, W.T. (Ed.), Theoretical and

Applied Mechanics (Proceedings of the 14th International Congress on Theoretical and Applied

Mechanics), North-Holland Publishing CO.. pp. 207–220.565

30

http://www.sciencedirect.com/science/article/pii/S0045782505000307
http://dx.doi.org/https://doi.org/10.1016/j.cma.2004.12.016
http://dx.doi.org/https://doi.org/10.1016/j.cma.2004.12.016
http://dx.doi.org/https://doi.org/10.1016/j.cma.2004.12.016
http://www.sciencedirect.com/science/article/pii/S0921509311000955
http://www.sciencedirect.com/science/article/pii/S0921509311000955
http://www.sciencedirect.com/science/article/pii/S0921509311000955
http://dx.doi.org/https://doi.org/10.1016/j.msea.2011.01.073
http://www.sciencedirect.com/science/article/pii/S0022311518301430
http://www.sciencedirect.com/science/article/pii/S0022311518301430
http://www.sciencedirect.com/science/article/pii/S0022311518301430
http://dx.doi.org/https://doi.org/10.1016/j.jnucmat.2018.05.068
http://dx.doi.org/https://doi.org/10.1016/j.jnucmat.2018.05.068
http://dx.doi.org/https://doi.org/10.1016/j.jnucmat.2018.05.068


Simone, A., Askes, H., Sluys, L.J., 2004. Incorrect initiation and propagation of failure in non-

local and gradient-enhanced media. International Journal of Solids and Structures 41, 351 – 363.

URL: http://www.sciencedirect.com/science/article/pii/S0020768303005213, doi:https:

//doi.org/10.1016/j.ijsolstr.2003.09.020.

Smidt Jr, F., 1970. Comments on dislocation structures in irradiated and strained iron. Scripta570

Metallurgica 4, 517–520.

Steinmann, P., Stein, E., 1996. On the numerical treatment and analysis of finite deformation ductile

single crystal plasticity. Computer Methods in Applied Mechanics and Engineering 129, 235–254.

Stelmashenko, N., Walls, M., Brown, L., Milman, Y.V., 1993. Microindentations on W and Mo

oriented single crystals: A STM study. Acta Metallurgica et Materialia 41, 2855–2865.575

Thomas, T.Y., 1961. Plastic Flow and Fracture in Solids. volume 2. Elsevier.

Tucker, R., Wechsler, M., Ohr, S., 1969. Dislocation channeling in neutron-irradiated niobium. Journal

of Applied Physics 40, 400–408.

Vandoren, B., Simone, A., 2018. Modeling and simulation of quasi-brittle failure with continuous

anisotropic stress-based gradient-enhanced damage models. Computer Methods in Applied Me-580

chanics and Engineering 332, 644–685.

Wechsler, M.S., 1973. Dislocation channeling in irradiated and quenched metals. The Inhomogeneity

of Plastic Deformation .
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